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USING CHILDREN'S MATHEMATICAL KNOWLEDGE

Marla has 4 peanuts. Her mother gave her some more. Now she has 11 peanuts.
How many peanuts did her mother give her?

Most first- and second-grade teachers, and probably most adults, see the above
problem as a subtraction problem that will be difficult tor young children to solve.
However, consider what Elissa (a four-year-old) did when asked to solve this problem.
First, Elissa counted out four counters. Then she added more counters until she had 11.
With her hand she separated out the original four counters, then she pointed to the
group she had lett and said to the interviewer, "This many." The interviewer asked her,
"How inany is that?' Elissa counted, "One, two, three, four, five, six, seven. Turning to

the interviewer, Elissa announced firmly, "Seven peanuts!"

Elissa did what most young children do. She invented a way to solve the problem
that was based on how she thought about the problem, not on any procedure that had
been taught to her. She recognized that the problem involved joining some things
together, and she did that. Elissa is not unusual. In fact, we have learned from research
that all children come to school knowing a great deal about mathematics. If adults take
children's mathematical knowledge seriously, they can help children use their knowledge

to solve problems and learn more mathematics.

Aduits have not alwaws taken children's knowledge seriously. Typically, parents and
teachers have assumed ,hat children begin school with little or no knowledge of
mathematics. This assumption was not unreasonable when the primary goal of the
elementary mathematics curriculum was to develop skill in computation (e.g., to learn
the basic facts and the algorithms of addition and subtraction). Children did not come to
school with much knowledge of formal algorithms, so it made sense to assume that
children did not have much mathematical knowledge. Although most educators knew
that computational skills were not sufficient, they presumed that before children could
understand the algorithms and use them to solve problems, children needed to have
mastered computational skills. Thus, primary school instruction has focused on the
practice of these skills to attain mastery. This emphasis is even more pronounced in th
instruction of children in less advantaged socioeconomic areas, who spend more time in
computational tasks than children in schools with more resources (Zucker, 1990). The
tacit assumption is that once children have learned to compute with a reasonable level of
facility, they can be taught to understand why the various procedures work and to apply

the procedures to solve problems.

Findings from the National Assessment of Educational Progress and other research
programs have documented, however, that this heavy emphasis on computation has
been misplaced (Dossey, Mullis, Lindquist, & Chambers, 1988). Although children in the
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United States can demonstrate computational skills at a reasonable level of proficiency,
most children do not appear to understand the mathematics in the skills, and they cannot
apply the skills to even simple problem situations. This situation has led the National
Council of Teachers of Mathematics (1989) and the Mathematical Sciences Educational
Board of the National Research Council (1989) to propose that problem solving and the
development of mathematical understanding should be the foci of the mathematics
curriculum for all students and that problem solving should be integrated throughout the
mathematics curriculum rather than tacked on after computational skills are mastered.

Reconsidering Children's Mathematical Knowledge

A new approach to teaching and curriculum, which holds promise for achieving the
expanded goals of mathematics instruction, takes seriously the knowledge that children
have when they enter school. In this approach, teachers use the knowledge of each
child to make instructional decisions so that the child learns mathematics with
understanding, learns how to solve problems, and also learns the computation skills.
This approach uses knowledge that has been accumulating from research on children's
thinking in mathematics.

The Research Base on Children's Thinking

A growing body of research documents that children develop understanding,
problem-solving abilities, and skills concurrently as they engage in active problem

solving (Fennema, Carpenter, & Peterson, 1989a). This research also shows that
children invent ways of solving problems that are not tied to traditional arithmetic
solutions (Carpenter, 1985; Ginsburg, 1983; Lave, 1988). In fact, children's problem-
solving experiences actually form the basis for their development of basic arithmetic
concepts and skills.

Over the last 10 years, an extensive body of research has also accumulated on the
development of basic addition and subtraction concepts and skills in primary school
children (Carpenter, 1985; Fuson, 1988). This research shows that young children are
adept at solving simple word problems, and their solutions often involve relatively
sophisticated problem-solving processes. Even before children receive any formal
instruction in addition and subtraction, they consistently solve simple addition and
subtraction word problems by modeling and counting.

Consider, for example, the problem that Elissa solved at the beginning of the paper.
Maria had 4 peanuts. Her mother gave her some more. Now she has 11 peanuts. How
many peanuts did her mother give her? Most adults solve this problem by subtracting 4
from 11, but it is mit easy to explain why to subtract. Subtraction is usually taught as

representing a separating action like the situation in the following problem: Angelica had
14 dollars. She spent 6 dollars on a kitten. How many dollars does she have left? The
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problem about the peanuts, however, might be perceived as asking how much needs to
be added to the 4 to get 11 peanuts. Accordingly, young children do not think of this as
a subtraction or take-away problem. They solve the problem by modeling the additive
action. If children have counters, they make a set of 4 counters and then add counters
to this initial set until there are a total of 11 counters. By counting the counters that have
been added on, children find the number of peanuts that Maria's mother gave her.

The above example illustrates two features that are important for understanding
children's thinking and how elementary mathematics instiucion might be designed to
build on it. First, different problem situations exist that represent different conceptions of
addition and subtraction, not just the simple joining and separating situations that are
used to define addition and subtraction in most standard elementary mathematics
textbooks. Second, children do not interpret all addition and subtraction problems in
terms of pluses and minuses; they attempt to model the action and the relationships
described in the problem.

Current research on children's thinking about addition and subtraction problems is
based on a detailed analysis of the problem space (Carpenter, 1985). Addition and
subtraction word problems are partitioned into several basic classes that distinguish
among different tpes of actions and relationships. Distinctions are made among
problems involving joining action, separating action, part-part-whole relationships, and
comparison situations. Examples of each of these basic problem types are presented in
Table 1. (For a complete description of this problem space and the related solution
strategies, see Carpenter, 1985, or Fennema & Carpenter, 1989.) Within each class,
three distinct problem types can be generated by systematically varying the unknown in
the problem. For example Elissa's problem is a joining problem with the change
unknown, while the joining problem in Table 1 is one with the result unknown. The first
separating problem in Table Us a result-unknown problem, while the second one is a
start-unknown problem. This classification scheme provides a highly principled analysis
of problem typbs such that knowledge of a few general rules is sufficient to generate a
complete range of problems.

The power of this analysis is that it is consistent with the way children think about
problems and solve them. When young children initially solve word problems, they
directly model the action or relationships in the problem using counters, fingers, or
counting patterns. For example, a young child would solve the first separating problem
in Table 1 by making a collection of 12 counters and removing 5 of them. A young child
would solve the comparing problem most readily by making two sets and matching them
to find out how many are left over. Elissa's solution to the problem at the beginning of
this paper illustrates how one type of joining problem is solved.
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Table 1

Basic Classes of Addition and Subtraction Problems

Problem Type Exam le Problem

Joining There were 7 birds on a wire. Five more birds joined them. How
many birds were on the wire then?

Separating Twelve frogs were in the pond. Five frogs hopped out. How
many frogs were left?

There were some frogs in the pond. Five hopped out. Then
there were 7 frogs left. How many were there to start with?

Comparing Charles picked 7 flowers. Penelope picked 12 flowers. How
many more flowers did Penelope pick than Charles?

Part-Part Whole There are 7 boys and 5 girls on the playground. How many
children are on the playground?

Children at this level generally have difficulty with problems that cannot be easily
modeled. For example, the second separating problem in Table 1 is difficult to model
because the initial quantity is the unknown, so children have no place to start in
attempting to model the action in the problem.

Over time, children invent more efficient strategies for solving these problems. They
base these strategics on their growing understanding of number concepts. For example,
a child might solve the problem about the peanuts by counting up from 4 and saying, "5,
6, 7, 8, 9, 10, 11. The answer is 7." In this case, the child does not exactly model any of
the quantities described in the problem but simply keeps track of the number of steps in
the counting sequence using fingers or some other device. Similarly, a child might solve
the first separating problem in Table 1 by counting back from 12.

Even when first- and second-grade children appear to be using recall of number
facts to solve problems, many children are actually using these modeling and counting
strategies. Gradually, they begin to learn the number facts first by using a core of facts
they know in ordev to derive or generate unknown facts. For example, to solve the first
joining problem, six-year old Juan might respond: 'Well, I know that 5 and 5 is 10, so
since 7 is 2 more than 5, the answer is 12 because 12 is 2 more than 10."

ithough for many teachers and adults this kind of thinking seems abstract, for Juan
it makes perfect sense because he is building on and using what he knows in order to
solve a mathematics problem. Derived facts are not used only by a handful of very
bright students. Even without specific instruction, many children use derived facts
before they have mastered all their number facts at a recall level. In a three-year
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longitudinal study in Madison, Wisconsin, over 80% of the children used derived facts at
least occasionally at some time in grades 1 to 3, and 40% of the children used derived
facts as their primary strategy at some time during the three years.

Indeed, all these kinds of thinking by children in the primary grades are typicd.
Almost all children spontaneously use the kinds of solution strategies that we have
di,,cussed. By the middle of the first grade, most children can solve many different types
of addition and subtraction problems, and they are beginning to use more efficient
counting strategies as well as direct modeling.

Children's solutions demonstrate in two ways the kind of mathematical thinking that
we want to encourage. First, children can solve a variety of problems by attending
carefully to the information given in the problem, not by looking for key words or using
other tricks to bypass understanding. Second, the procedures they invent to find the
answer demonstrate creative problem solving based on an understanding of
fundamental number concepts. In the early elementary school years, children are
capable of much more sophisticated thinking than adults have assumed. Children do
not start school as blank slates but bring with them a rich store of mathematical
knowledge that they have already acquired.

The research on children's solving of addition and subtraction problems
demonstrates that children enter school with a rich store of informal knowledge that can
serve as a basis for developing meaning for the formal symbolic procedures they learn in
school. But the research does more than demonstrate that children know more and are
capable of learning more than they have been given credit for. It also provides a
principled framework for selecting problems and analyzing students' thinking that allows
teachers to understand better their own students' thinking so that they can select
appropriate instruction to build on the mathematical knowledge that their students have
already acquired. Disadvantaged children, as well as advantaged children, have
interacted with numbers in a variety of ways. They have counted many things, have
some knowledge of money, and have had many natural interactions with numbers.

The analysis of the addition/subtraction problem space and the related research on
children's solution strategies comprise a systematic body of knowledge that is useful in
developing an approach to mathematics teaching and curriculum for all children in the
primary grades. We consider now the Cognitively Guided instruction (CGI) project in
which we have been studying the use of this knowledge by teachers and children.

The CGI Approach

The CGI approach is based on two key assumptions: first, that knowledge of
children's thinking about addition and subtraction problems can be useful to teachers;
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and second, that just as children interpret and make sense of new knowledge in light of
their existing knowledge and beliefs, so do teachers.

Sharing Research Knowledge with Teachers

Rather than attempt to use this research to specify a program of instruction, we
decided to share the research-based howledge about children's mathematical
knowledge and thinking directly with teachers and to let teachers interpret for
themselves what it meant to their instructional programs. Our approach is similar to how
we believe children learn and is also compatible with site-based approaches to school
improvement. Each child has to make sense of the world for himself or herself.
Understanding comes only when a child is able to assimilate new knowledge in a way
that is not in conflict with what she or he already knows and believes. Why should
teachers be any different? In fact, research suggests strongly that teachers'
understandings and beliefs profoundly influence their instruction (Clark & Peterson,
1986) and that teachers gain understanding in much the same way that children do
(Duckworth, 1987; Lampert, 1984). Teachers in their classrooms are the ones who
make the decisions that influence learning, and they make decisions that are congruent
with what they understand and believe (Fennema, Carpenter, & Peterson, 1989b).

At the beginning of our National Science Foundation-supported CGI project, 40

experienced first-grade teachers from the Madison, Wisconsin area agreed to work with
us. We assigned teachers randomly to one of two groups. The first group (CGI)
participated in the Vaining workshop during the summer of 1986. These teachers spent
20 hours per week for 4 weeks with us learning about children's thinking in addition and
subtraction. The second group served as a comparison or control group during the first
year and participated in a similar workshop in the summer of 1987.

During the workshop, we shared with the teachers the framework of problem types
shown in Table 1 and the related children's solution strategies. The teachers viewed
videotapes of children solving addition/subtraction word problems until the teachers
could identify both problem types and strategies with relative ease. The teachers also
interviewed five- and six-year old children to ascertain whether children actually used the
solution strategies that had been discussed.

We did not tell the teachers what to do with the knowledge they had gained. We
discussed the importance of a teacher's knowledge of how each child solves problems,
the place of drill on number facts, and the necessity for children to think and talk about
their own problem solutions with each other and with the teacher. We talked about
adapting the problems (by type of problem or size of number in the problem) given to a
child, depending on what the child understands and can do. We discussed writing
problems around themes related to children's lives and classroom activities. (For a
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complete description of activities and readings used in the workshop, see Fennema &
Carpenter, 1989.)

We gave the teachers time to plan how they would use their new knowledge in their
classrooms during the following year. Teachers talked extensively with us and with
other teachers about possible implications of the knowledge about addition and
subtraction. Most teachers wrote examples of all the problem types to use in their
classrooms, and tentatively planned one unit that they would teach sometime during the
school year.

What Research Says About the Use and Effectiveness of CGI

We pre- and posttested children in the CGI and control teachers' classes, and we
observed these teachers' mathematics teaching regularly during the 1986-87 school
year. We also assessed the teachers' knowledge and beliefs about teaching
mathematics both before the workshop and at the end of the school year (Carpenter,
Fennema, Peterson, & Carey, 1988; Peterson, Carpenter, & Fennema, 1989; Peterson,
Fennema, Carpenter, & Loef, 1989). We compared the instructional practices, beliefs,
and knowledge of the CGI teachers and the learning of CGI students with those of the
control group of teachers and their students.

When compared with control teachers, the CGI teachers spent significantly more
time on word problem solving in addition and subtraction, and they spent significantly
less time drilling on addition and subtraction number facts. CGI teachers also
encouraged their students to solve problems in many more different ways, listened more
to their students' verbalizations of ways they solved problems, and knew more about
their individual students' problem-solving strategies. CGI students outperformed control
students on written and interview measures of problem solving r...nd number fact

knowledge, including a measure of complex word problem solving on the Iowa Test of
Basic 3kills, and they reported greater understanding and confidence in their problem-
solving abilities. Although CGI teachers spent only half as much time as control
teachers did in teaching number fact skills explicitly, CGI students demonstrated greater
recall of number facts than did control students.

Those teachers who believed more in the ideas of CGI and had more knowledge
about their children listened more to their children's verbalizations of their thinking, and
they implemented CGI more than did those teachers who had lesser knowledge and
weaker beliefs. In sum, at the end of only one year, the research evidence
demonstrated that teachers' use of the knowledge of child;en's mathematical thinking
that they had gained from the workshop and developed in their classroom practice made
a significant difference in their children's confidence and abilities to solve mathematics
problems. (For complete descriptions of these results, see Carpenter, Fennema,
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Peterson, Chiang, & Loef, 1989; Peterson, Carpenter, & Fennema, 1989; Peterson,
Fennema, & Carpenter, 1988/1989.)

But would a CGI approach be effective with disaaiantaged children in inner-city
schools? Indeed, some would argue that disadvantaged children still need drill on
computation skills and number facts. However, we have recent evidence that a CGI
approach can be quite successful in this setting.

Significant effects of CGI on students' problem solving were reported recently by
Villasenor (1990), who worked with first-grade teachers in inner-city public and private
schools in Milwaukee, Wisconsin. Villasenor participated in a CGI workshop taught in
Madison, Wisconsin, by two members of our original project staff. He then used the
Cognitively Guided Instruction program implementation guide, readings, and materials
developed by Fennema and Carpenter (1989) to conduct a one-week, four-hour-per-day
workshop (for a total of 20 hours) for 12 inner-city Milwaukee first-grade teachers in the
summer of 1989. These teachers volunteered to participate, and they became the CGI
"treatment" group. Villasenor also recruited another group of 12 first-grade teachers
from schools in inner city Milwaukee who formed the "non-treatmenr control group.
During the workshop, teachers in the CGI group focused on understanding the different
types of word problems in addition and subtraction and on understanding students'
strategies for solving these word problems. Teachers explored ways to assess students'
mathematical knowledge as well as ways to use this knowledge to design instruction,
and they planned their instruction using CGI for the upcoming school year. During the
school year, these CGI teachers met once a month on Saturday mornings to share their
ideas about CGI and talk about their implementation of CGI Ideas in their first-grade
classrooms. Teachers in the control group participated in two 1-1/2-hour workshops on
problem solving in October and in January.

To assess students' problem-solving achievement at the end of the year, Villasenor
used tae written test of problem solving that we developed (Carpenter, Fennema,
Peterson, Chiang, & Loef, 1989). Students in CGI teachers' classes achieved
significantly higher scores than did students in control teachers' classes, achieving an
average of 9.67 out of 14 items correct, a mean score that was nearly 4 standard
deviations higher than the average score of 2.92 for students in the control group. CGI
students also showed significantly greater knowledge of number facts, achieving an
average ot 4.75 out of 5 items correct, or about 5 standard deviations above the mean of
2.29 for the control group students. These significant results are shown in Figure 1.

110



10

9

8

7

Average
6

Problem- 5
Solving Score

4

3

2

1

0

Pretest Posttest

IMRIMMINI

41. Control Classes

43. CGI Classes

FIGURE 1 AVERAGE PRETEST AND POSTTEST PROBLEM-
SOLVING SCORES OF STUDENTS IN CGI CLASSES AND
CONTROL CLASSES IN VILLASENOR'S (1990) STUDY

One possible limitation of the study involves the comparability of the control group to
the CGI group of teachers and students. The groups were similar in at least one
respect. In both groups, teachers taught in schools with an enrollment that averaged
76% minority students, drcwn from predominantly Hispanic and black populations.
However, the groups were dissimilar in that teachers in the CGI group had students who
performed 1 standard deviation higher on the problem-solving pretest than did students
in the control group (alt..ough in both groups students' averages on the pretest were only
1 or 2 problems correct out of 14). Nonetheless, CGI students' average increase in
problem-solving achievement was still significantly greater than that of control students,

even when initial pretest scores were taken into account. In sum, Villasenor's results are

important because they provide concrete evidence for the effectiveness of the CGI
approach with a disadvantaged population of studentsthe same kinds of students who

often participate in compensatory education programs.

A Look At CGI Classrooms

After the original year of studying CGI and its impact, we have continued to study

CGI teachers. As a result, we know that CGI classrooms are different from traditional

classrooms. Consider, for example, the following descriptions of a traditional second-

grade classroom and a first grade CGI classroom.
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Traditional Classroom

The lesson begins with a three-minute timed test in which each student tries to beat
a personal best in writing answers to number facts with speed and accuracy. Then Ms.
K. reads aloud two word problems involving addition or subtraction of multidigit numbers.
Students work on these problems at their tables. Ms. K. calis on a few students to
explain their strategies. The students respond by stating the algorithms they used.
Finally, the teacher passes out worksheets containing more word problems that are
result-unknown problems. The students are to solve these with traditional multidigit
algorithms. She asks the students to complete three of these problems before the end
of the lesson. All students work the problems with the traditional algorithms while Ms. K.
circulates to help them.

In the traditional primary mathematics classroom, children are on task and doing
what the teacher has told them to do. Most activities focus on learning a computational
procedure to solve each word problem. The teacher expects all children to do the same
routine and to have the same knowledge in mathematics. The word problems seem to
serve as a context for children to practice their algorithms rather than as a context for
children to make visible and share their thinking and problern-soMng strategies. The
teacher expects all children to use the same strategythe standard algorithmto so!ve
each word problem. The teacher bases all her decisions on what she thinks is important
for children to learnin this case, the addition aid subtraction procedures.

CGI Classroom

While most of the class are solving word problems independently or in small groups,
Ms. J. is sitting at a table with three students, Raja, Erik, and Emestine (Em). Each child
has plastic cubes that can be connected together, a pencil, and a big sheet of paper on
which are written the same word problems. As the students peruse the problems, they
notice their names:

Raja: My name is already there!

Ms. J.: Your name is there? Yes!

Em: My name is on! Her name is on!

Ms. J.: Yeah, and so is your name, eventually. Okay. Who wants to read
the first ot a?

All: Mel

Ms. J.: Well, let's read them together.

All: [reading] Raja made 18 clay dinosaurs. Ernestine has 9 clay
dinosaurs. How many more clay dinosaurs does Raja have than
Emestine? [A compare problem]

Ms. J.: Okay [reads problem again as students listen].
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The students work on the problem in different ways. Raja puts together 18 cubes.

She removes 9 of them and counts the rest. She gets 11. She writes the answerdown,

then looks up at the teacher for confirmation. Ms. J. looks at the answer, looks back at

the problem, and then says, "You're real close." As Haja recounts the cubes, Ms. J.

watches her closely. This time Raja counts 9.

Emestine exclaims, "I've got it!" Ms. J. looks at Ernestine's answer and says, "No.

You're real close."

Erik connects 9 cubes, and in a separate group he connects 18. He places them
next to each other and matches them up, counting across each row to make sure there

are 9 matches. Then Erik breaks off the unmatched cubes and counts them. "I've got it!"

he announces. Erik writes down his answer. He says to Ms. J., "Got it. Want me to tell

you?" Ms. J. nods "Yes." Erik goes to Ms. J. and whispers his answer in her ear. Ms. J.

nods, "Yes" in reply. Turning to the group, she queries, "Okay now, how did you get

your answers? Remember, that's what's always the important thing is: How did you get

it? Let's see if we can come up with different ways this time. [Erik has his hand raised.]

Erik, what did you do?"

Erik: I had 9 cubes and then I had and then I put 18 cubes and then I put
them together. And the 18 cubes, I took away some of the 18
cubes.

Ms. J.: Okay, let's see if we can understand what Erik did. Okay, you got
show me 18 cubes.

Erik: Okay. [He puts together two of the three sets of 9 he has lined up in

front of him.]

Ms. J.: Okay, so you have 18 cubes. Then you had nine.

Erik: [He takes 9 cubes in his other hand and puts them side by side.]
Yeah.

Ms. J.: Then you compared.

Erik: [simultaneously with Ms. J.] Then I put them together.

Ms. J.: Then you put them together.

Erik: Then I took...

Ms. J.: Nine away.

Erik: Nine away, and I counted them [the ones left], and there were 9.

Ms. J.: Okay. So that's one way that you did it. Nice job, Erik. Which way
did you do it, Raja?
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Raja: [She has a set of 18 cubes connected in front of her.] Well, I
counted 18 cubes.

Ms. J.: Erik, let's listen to her way.

Raja: Then I counted 9. [She counts 9 of the 18.]

Ms. J.: You counted 9. [Another student comes up to the table and puts a
paper in front of Ms. J. Ms. J. pc's her arm around this student
while she continues listening to Raja.]

Raja: Then I [she breaks the 9 cubes away from the 18], then I got 9.

Ms. J.: Okay, great! [To Ernestine]: What did you do? [To Raja as she
pats her on the hand]: Nice job.

Ern: I knew 9 plus 9 was, S plus 9 is 18. I took away one 9, and it was 9.

Ms. J.: Okay. Say that again. I'm sorry, I missed your problem.

Em: I said I knew 9 plus 9 was 18.

Ms. J.: You knew that 9 plus 9 was 18. Okay.

Ern: I took away one 9 and it was 9.

Ms. J.: Okay. Good. So we hadhow many different ways did we do that
problem? Erik, you did it one way, right? Raja, was your way
different from Erik's? [Raja nods "Yes.1 Was your way different
from Ernestine's? [Raja nods "Yes."I So that was two ways.
Ernestine, was your way different from Raja?

Em: Yes.

Ms. J.: Was your way different from Erik?

Ern: Yes.

Ms. J.: So we did the problem in three different ways. Let's read the next
problem.

The three children in Ms. J.'s class worked on one problem for about five minutes.
These children, who could be characterized as disadvantaged, were solving a relatively
difficult comparison problem. Ms. J. had written the problem just for these children and
had even put two of the children's names in the problem. In deciding on the type of
problem and the size of the numbers in the problem, Ms. J. drew on her knowledge of

these children's mathemMical knowledge and thinking. Each child figured out a way to
solve the problem and described clearly what he or she had done. Ms. J. is experienced
at listening to her children talking about their thinking. She is adept at understanding
what they are trying to say and at gently probing when she doesn't understand how they

are thinking. When the above dialogue occurred, Ms. J. had been working with these
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children for a number of months, so she knew the kinds of thinking they might do. She

also had a well-organized body of knowledge that included how young children typically

solve comparison problems. She recognized each strategy as one that many children

use to solve comparison problems.

In the CGI classroom, the teacher poses problems that each child can solve at his or

her level of mathematics knowledge and understanding. The teacher encourages each

child to solve mathematical problems using ways that make sense to the child. Ms. J.

encourages each child to tell her how he or she solved the problems and uses what the

child tells her to make instructional decisions. Children are aware that their thinking is as

important as the answer and are not only comfortable, but determined that Ms. J.

understand how they have solved each problem.

In other CGI classrooms, teachers work with the whole class and take into account

individual differences in students in two ways. First, teachers pose problems that can be

solved in a variety of ways so that each child can solve the problem according to his or

her level of mathematical knowledge. Second, teachers substitute smaller or larger

numbers in the same word problem, depending on their judgments of the size of

numbers that different children can work with and use. After posing a problem to the

whole class, teachers typically call on several children, one at a time, to say and show

how they solved the problem. Often the teacher expects the next child to provide a

different solution strategy from the ones given previously.

Key Elements of CGI Classrooms

Because teachers were not given prescriptions, they have adapted CGI ideas

according to their own teaching styles and according to what is comfortable and right for

them. Thus, each CGI classroom is, in some sense, unique. However, we have

observed three key elements that all CGI classrooms have in common. As we have

discussed already, one important element is that multiple solution strategies to problems

are recognized, encouraged, and explored. These solution strategies are brought out as

the thinking of children becomes visible within the context of solving problems. This

points to a second key element of CGI classrooms: a focus on problem solving. A third

key element of CGI classrooms is that teachers have an expansive view of children's

mathematical knowledge and thinking. CGI teachers believe that all children know

something about mathematics and that, as teachers, they need to figure out continually

what children know about mathematics and then use this knowledge to plan and adapt

their mathematics instruction. We consider these last two elements further in the

sections that follow.
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Focus on Problem Solving

Problem solving is the focus of all CGI classrooms. Teachers pose many problems
for children. They carefully write or select these problems to be appropriate for their
children. Generally, teachers construct problems relevant to the children's real lives in
school and out, such as a forthcoming class trip to the school forest or the real need to
figure out at the beginning of each school day how many children will eat hot and cold
lunches. Problems emerge during social studies lessons, or from a book the teacher
happens to be reading to the class, or from a fantasy world constructed by the class,
such as the Friendly Forest where raccoons can change the number of stripes on their
tails depending on the problem. Some teachers, like Ms. J., usually write problems for
each child, but not all teachers do. Because all problems can be solved in a variety of
ways, teachers find that only a few problems can occupy the entire class for a day.
Table 2 presents a set of problems that one teacher constructed for her children as she
was reading her class the book The Berenstein Bears and Too Much Junk Food.

Problem solving is not limited exclusively to word problems. For example, children
invent their own ways to solve multidigit number problems. The following solution shows
the thinking of a child in a CGI classroom as she added two three-digit numbers, 248
and 176, to solve a word problem:

Well, 2 plus 1 is 3, so I know it's two hundred and one hundred, so now it's
somewhere in tha three hundreds. And then you have to add the tens on. And the
tens are 4 and 7...well, um, is you started at 70, 80, 90, 100. Right? And that's four
hundreds. So now you're already in the three hundreds because of the (40+70). But
you've still got one more ten. So if you're doing it: 300 plus 40 plus 70, you'd have
four hundred and ten. But you're not doing thet. So what you need to do then is add
6 more onto 10, which is 16. And then 8 more: 17, 18, 19, 20, 21, 22, 23, 24. So
that's 124. I mean 424.

An Expansive View of Children's Mathematical Knowledge

CGI teachers believe that all children know something about mathematics and that,
as teachers, they need to consider and use their children's mathematical knowledge in
planning instruction and in making decisions during instruction. CGI teachers realize
that they need to be learning continuously about their children's mathematical
knowledge and thinking as it is developing. They continually assess what each child can
do, formally through individual interviews and informally as part of ongoing classroom
discourse when children solve problems. During classroom discourse, the teacher
typically encourages the children to solve a problem any way they wish. Then the
teacher asks individual children how they solved the problem and listens carefully to
each child's explanation. Teachers' knowledge of the organized framework of problem
types and related solution strategies helps them understand and keep track of individual
students' thinking as well as the kinds of problems a student can solve.
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Table 2

WORD PROBLEMS WRITTEN BY A SECOND-GRADE TEACHER
(Van Den Heuvel, 1990) to accompany The Berenstein Bears and Too Much Junk

Food (Berensteln, S., and Berensteln, J.)

1. Sister Bear used to weigh 55 pounds. Then she ate too much junk food, and
now she weighs 71 pounds. How many pounds did she gain?

2. Brother Bear weighed just the right amount for his height. Then he ate too
much junk food and gained 24 pounds. Now he weighs 90 pounds. How much
did he weigh to begin with?

3. If Brother Bear weighed 84 pounds, and he weighed 37 pounds more than
Sister Bear, then how much would Sister Bear weigh?

4. Papa Bear weighed 21 pounds more than Brother Bear and Sister Bear
combined. If Brother Bear weighed 45 pounds and Sister Bear weighed 31
pounds, then how much would Papa Bear weigh?

5. While the bears were getting back in shape, Mama kept track of how much
weight they lost. Brother Bear lost 23 pounds. Papa sear lost 47 pounds more
than Brother Bear lost. How many pounds did Papa Bear lose?

6. Sister Bear was a little "chubby" as Mama Bear put it. Then she began to eat
healthier food and exercise more. After one month she lost 11 pounds. Then
she weighed 60 pounds. How much did she weigh when she was "chubby?"

7. Write your own problem about the Berenstein Bears and their exercise
program.

A Limiting View of Children's Knowledge: The Case of Ms. W. and AdamTo
clarify what we mean when we say that CGI teachers have an expansive view of
children's knowledge and that they use their understanding of what children know to
build on children's thinking, we first describe a teacher wt.o takes a limiting view of her
children's mathematics knowledge. In the following example, Ms. W.'s limited view of
Adam's knowledge leads her to miss opportunities to use that knowledge to help other

students learn (Lubinski, 1989):

Ms. W.: [writes on the board]:
35

435

Ms. W.: Now, who can add this for me? Adam.

Adam: 70

Ms. W.: How did you get that?
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Adam: Well, I knew that 3 and 3 is 6, so 30 and 30 is 60. And 5 and 5 is
10, and 60 plus 10 is 70.

Ms. W.: OK. You have the right answer. However, if I did 3 plus 3 is 6, a .1
then I went to 5 plus 5 is 10, and I put that down, Adam, I'd have
610.

Ms. W.: [writes on the board]:
35

±25.
610

Ms. W.: Is that the right answer?

Adam: No.

Ms. W.: You have the right answer, but how could I do that to show it?

Adam: You could do 5 and 3.

Ms. W.: Well, I can't. They live in different houses.

Adam: You add the fives and then you add the threes.

Ms. W.: Well, I'm over here in the ones' house. What do I have to do? I'll
bet, Linda, you remember what I did. . . .

In an interview following the class, Ms. W. described her thinking about the above
situation as follows:

He (Adam) had a very good way to explain it, but he wasn't explaining that I wanted
him to carry the 10. You have so many children that will write down the 10 and then
go to the tens' column and put down a number there too and come up with a three
digit answer when it should be two. I thought his processhis thinkingwas
excelletit, but he would not have been able to record it. He would have known it was
wrong, but he wouldn't have known how to change it.

This episode illustrates that children are capable of sophisticated mathematical
thinking. But, like many adults, Ms. W. missed the opportunity to capitalize on a child's
thinking because she looks at the problem only from her point of view rather than the
cHd's and attempts to teach (in this case, the carrying procedure) rather than to listen,
understand, and facilitate the child's development of mathematical knowledge.
However, we cannot be too critical of Ms. W. She was concerned with more than
whether Adam had the right answer. She did ask Adam to explain how he got his
answer, and she seemed to understand his explanation. Yet she was unwilling to let go
of her role as the dispenser of knowledge to try to build on Adam's thinking. Although
she expressed a concern that Adam's procedure would result in errors for him or for
other students, nothing in Adam's response suggests that he could not have written his
answer correctly. Indeed, many students who had difficulty understanding Ms. W.'s
procedure of "carrying the 1" may have understood Adam's thinking about the problem,
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and might have been able to solve the problem after listening to him. Ironically, Ms. W.
did not seem to recognize that Adam was modeling exactly the kinds of mental
computations that are advocated by authors of mathematics education reform
documents such as the NCTM Standards (1989, pp. 46-47).

Expanding Teachers' Views of Children's KnowledgeAlthough Ms. W.
participated in a CG1 workshop, she does not yet take the expansive view of children's
mathematical knowledge illustrated by Ms. J. However, Ms. W. is starting to listen to
how her students solve problems. This is an important step. Some CGI ideas conflict
with central beliefs of many teachersthat teach9rs are the source of knowledge and
that teachers have a responsibility to "cover" all the mathematics content specified in a
mandated curriculum. Changing beliefs and attitudes takes time. The CGI workshop
alone did not change teachers; teachers changed most when they began to listen and
attend seriously to their own students' thinking as the children solved problems. We
found that the impact of the CGI approach and the change in teachers' behavior were
related significantly to how carefully and closely teachers listened to the ways their

children solved mathematics problems.

The research-based knowledge of the problem framework and children's strategies
gave teachers a context for thinking about children's knowledge and for helping them
make sense of their children's thinking. As one teacher said to us, "I've always known
that I should ask the children questions that would tell me what they were thinking, but I
never knew the questions to ask or what to listen for."

Teachers also have to believe that children's thinking is important. Consider
contrasting statements about the role of the teacher and the role of the learner made by
the same teacher, before the CGI workshop and a year later, after the teacher had been
using her knowledge of the problem types and solution strategies in her classroom.
Before the workshop, the teacher asserted that "It is the job of the teacher to make sure
that she starts out very basic regardless of the math ability of the children." She saw the
student's role as "following directions, to be listening, to be looking at the teacher, to be
quiet so that they can absorb" what the teacher is saying. After using CGI for a year,
she said the teacher "should be a leader, yet an allower of the children to express their
ideas and a listener, so she can find out also what they are able to give her on their
own." She asserted that the student "should first be definitely thinking and be thinking
about what they do know."

An Expansive View of Children's Knowledge: Trie Case of Ms. J. and BillyTo
illustrate the thinking and teaching of a CGI teacher who takes an expansive view of
children's knowledge, we return to the classroom of Ms. J., whom we visited earlier. Ms.
J. is a first-grade teacher who teaches many disadvantaged children. She took the CGI
workshop in the initial year, and since then she has used and built on her knowledge of
children's thinking in her mathematics classroom. She has children of all ability levels in
her classroom, and she has children who do quite remarkable mathematical thinking in
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her room. Rather than look at these high-achieving children, we focus here on Ms. J.'s
work with Billy, one of the lowest-achieving children in her classroom. By so doing, we
emphasize our belief that all children have knowledge on which teachers might build
mathematics instruction. When teachers make instructional decisions that take into
account a child's mathematical knowledge, they enable that child to learn more
mathematics.

Billy ,NP a disadvantaged child who had arrived in Ms. J.'s classroom in the mi&le
of Octobe six weeks after school had started. He had not been in school previously
that year because of a teachers' strike in the community from which he came. When he
entered Ms. J.'s first-grade class, Billy could neither count nor recognize numerals. Ms.
J. and the other children helped Billy learn to count objects, first to five and then to 10.
Billy learned to count to 10 verbally, and when he continued to have great difficulty
recognizing numerals, Ms. J. gave him a number line with each number clearly
identified. Billy carried the number line with him continuously, and If he needed to know
what a numeral looked like, he would count the marks on the number I;ne and know that
the numeral written beside the appropriate mark was the numeral he needed. As soon
as Billy could count, Ms. J. began giving him simple word problems to solve. She would
write a word problem on a sheet of paper such as, "If Billy had two pennies, and Maria
gave him three more, how many would he have then?" (a joining problem with the result
unknown). Either Ms. J. or another child would then read the problem to Billy, who
would get some counters and patiently model the problem. In this problem, Billy made a
set of two cubes and a set of three cubes and then counted all the cubes. Ms. J. would
then ask Billy to explain how he got his answer. He would tell her what each set meant,
and how he had counted them all and gotten five and then counted up on his number
line to know what five looked like.

During mathematics class, Billy might solve only two or three of these simple
problems, but he knew what he was doing, and he was able to report his thinking so that
Ms. J. could understand what he had done. When Ms. J. was sure he understood the
simple problems such as the joining or separating result-unknown problems, she moved
on to somewhat harder ones and to somewhat larger numbers. She encouraged Billy to
make up his own problems to solve and to give to other children. Almost all of Billy's
time in mathematics class during the year was spent in solving problems by direct
modeling or in making up problems for other children to solve.

When we interviewed Billy near the end of the year, he was solving problems more
difficult than those typically included in most first-grade textbooks. Billy had become less
reliant on his number line, and he could solve result-unknown and change-unknown
problems with numbers up to 20. Although at that point he was not yet able to recall
basic arithmetic facts, he nonetheless, understood conceptually what addition and
subtraction meant, and he could directly model problems to find the answer. Billy was
no less proud of himself or excited about mathematics than any other child in the
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classroom. As he said to the school principal: "Do you know those kids in Ms. J.'s class
who love math? Well, I'm one of them."

The case of Billy is true. By the end of first grade, this child, who would have
qualified for any program for the disadvantaged, had made progress in learning
mathematics; he understood the mathematics he was doing; and he felt good about
himself and about mathematics. In his eyes, and in his teacher's eyes, Billy was a
successful learner, and clinical interview data also confirmed his success.

What enabled this success to occur? Although Ms. J. was acknowledged as an
expert teacher before she took the CGI workshop, she developed significant new
knowledge of and beliefs about children's mathematics learning during the year following
the workshop. The knowledge that she developed and used enabled her to work more
effectively than ever before with all children, including children like Billy.

Implications for Compensatory Education

The story of CGI is a story of teachers working with young children in a way that
enables them to learn mathematics with understanding, including children who are less
advantaged or less advanced in their mathematical knowledge. It is a remarkable story
because it demonstrates the professionalism of teachers who work with children in
schools. It shows that when teachers are given access to research-based knowledge
that is robust and is directly useful in helping them fulfill their perceived roles, they use
that knowledge as they teach, and it directly benefits the children with whom they work.
To be useful, knowledge needs to be well organized so that teachers can use it on a
daily basis as part of their ongoing mathematics instruction. The research-based
knowledge on children's problem solving in addition and subtraction proved to be an
example of well-organized, robust, and useful knowledge. Once teachers were given
access to this knowledge, and they perceived that it helped them to understand their
own children's thinking, they used the knowledge in their teaching of addition and
subtraction. This knowledge helped teachers think about the mathematical knowledge
of each child in their mathematics classrooms and to design mathematics curriculum and

instruction so that each child could learn. It helped teachers understand the thinking of
students who were having trouble learning, as well as the thinking of students who were

more advanced in their mathematics learning.

Just as this specific research-based knowledge of children's learning of addition and
subtraction was useful to primary teachers in Madison, Wisconsin, and in inner-city
Milwaukee, so too should the knowledge be useful for primary teachers elsewhere who
teach mathematics in compensatory education programs. This knowledge would
provide a new framework for thinking about addition and subtraction problems as well as

for thinking about young children's mathematical knowledge and abilities to solve
addition and subtraction problems.
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In addition to this specific knowledge that could be used directly in compensatory
education in mathematics, our work with CGI teachers suggests three important idea
that are important to consider in developing new approaches to teaching elementary
mathematics in compensatory education. These ideas have to do with: (1) assessing
students' mathematical knowledge and understanding, (2) building on students' informal
and formal mathematical knowledge, and (3) constructing curriculum and teaching in
ways that encourage mathematical thinking and problem solving by all children.

These "ABCs" may seem obvious to some teachers. Indeed, many elementary
teachers, including compensatory education teachers, might agree with these ideas and
even say they are implementing them in their mathematics teaching. However, we have
found that these ideas mean very different things to different people, so it is important to
discuss these ideas to gain an understanding of what they mean. Further, teachers
need to consider what these ideas might mean for reforming their mathematics teaching

in ways that will benefit students who have been served by compensatory education
programs.

Assessing Students' Mathematical Knowledge and Understanding

Most elementary teachers believe that they are teaching for understanding in
mathematics (see Cohen & Ball, 1990; Peterson, Fennema, Carpenter, & Loef, 1989),
but their definitions of what it means to know and understand mathematics differ
substantially from researchers' definitions derived from recent studies of children's
mathematics learning. For example, as one rather traditional elementary teacher in
California commented when discussing the state-level mathematics reform aimed at
teaching mathematics for understanding, 'What do they think we've been doing
teaching for misunderstanding?" (Cohen & Ball, 1990). Of course, this teacher's concept
of mathematical understanding differed substaLially from that of researchers and
curriculum reformers. Similarly, in a study of our first-grade teachers' goals and beliefs
before the CGI workshop, we contrasted seven teachers who had initial beliefs that were
more cognitively based and whose students did well on problem solving with seven
teachers who had beliefs that were less cognitively based and whose students did less
well on problem solving (Peterson, Fennema, Carpenter, & Loef, 1989). Cognitively
based beliefs reflected strong agreement with the ideas that:

Children construct mathematical knowledge.

Math skills should be taught in relation to problem solving.

Instruction should be sequenced to build on children's development of ideas.

Instruction should facilitate children's construction of mathematical knowledge.

Although we found important differences between the less cognitively based
teachers and the more cognitively based teachers in their goals, knowledge, beliefs, and
reports of how they taught addition and subtraction, as well as in their students' problem-
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solving achievement, all 14 teachers indicated that they placed the greatest emphasis on

mathematical understanding, compared with number fact knowledge and word problem

solving. However, all seven cognitively based teachers rated fact knowledge as least

important when compared with understanding and problem solving, while less

cognitively based teachers placed number fact knowledge either first (tied with

mathematical understanding) or second, after mathematical understanding. Thus, even

though these teachers differed significantly in their beliefs and in their reports of how and

what they taught in addition and subtraction, they all believed and reported that they

were teaching for mathematical understanding.

How do teachers know whether a child knows and understands mathematics? To

assess students' mathematical knowledge and understanding, most teachers rely on

observed student engagement or on students' answers to mathematics problems on

tests or worksheets (Ball, 1990; Peterson, Carpenter, Fennema, & Loef, 1989). In

contrast, CGI teachers who have changed their ideas of what it means for children to

understand mathematics adopt or invent new approaches and techniques for assessing

students' knowledge and understanding. These include using whole-class and small-

group discourse among children to '.;>am about their mathematical knowledge and

thinking, as well as interviewing individual children. CGI teachers are concerned with

understanding the processes that children use to solve problems rather than focusing

only on whether the answer is correct.

Building on Students' Informal and Formai Mathematical Knowledge

Before being able to use and build on students' mathematical knowledge in teaching,

a teacher needs to realize that all children know and understand some mathematics. All

too often, teachers focus not on what the student knows and how the student is

understanding but on what the child doesn't know and on how the teacher herself or

himself understands the mathematics problem. Like Ms. W., teachers often unwittingly

encourage their own way of thinking about a mathematics problem and fail to listen to

and try to understand a student's way of thinking about the problem. In contrast,

teachers like Ms. J., who take an expansive view of children's mathematical knowledge

and understanding, are continually astonished by what children know and understand.

Ms. J. showed equal enthusiasm in extolling the virtues of her children's mathematical

knowledge regardless of whether the child was one like Billy, who came to first grade

with less knowledge and understanding than other children, or one like Chery' whose

knowledge of division in December of first grade astounded Ms. J., who related to us the

following story:

I was working with Cheryl the other day, and she had 12 cubes in her hand. The
problem was Riva had 12 carrots, and she made 3 carrot cakes. She needed to
divide them equally into each cake. And you know, Cheryl had these cubes, and go,
go, goshe snapped it off real quick. I said, "How did you get that so quickly?" And
she goes, "Oh, you know, the numbers, you knowfirst *here were 3. If you put 3
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cakes, 3 carrots in each cake, and then I had 9. But if I add 1 more, that would be
4." So they (the children) are thinking. It's just so sophisticated. It just seems to
come together for them.

Constructing Curriculum and Encouraging Math Thinking and Problem
Solving

Our work suggests that knowledge about children's thinking can be an important
influence on instruction and learning. Teachers' behavior can be changed by helping
them gain knowledge about children's thinking, and this change in behavior results in
better mathematics learning by their students. For CGI teachers, this means doing
much more of the following in their teaching of addition and subtraction:

Posing word problems.

Listening to students' thinking.

Encouraging the use of multiple strategies to solve word problems.

Asking, "How did you get your answer?"

For CGI teachers, their use of the textbook and the way they think about the
mathematics curriculum also changes.

Supplementing the Textbook-Although teachers had been told explicitly by the
school district administrators that they did not have to use the textbook during the year of
the experimental study, only two CGI teachers reported that they did not use the
textbook at all that year. Eleven of the teachers reported using all or most of the
textbook; the remaining four teachers used the textbook in some way either as a
"backup" or "reinforcer" or for practice. When asked how she used the textbook, the
following CGI teacher gave a response that was typical during the first year:

I used it as a resource for getting ideas on how to present material. I used it as
practice pages for the kids. It is much less of a Bible than it has been in other years,
which was really nice for me. I didn't feel as tied to it.

On the other hand, when asked, "Did you cover everything in your textbook?" the
same teacher responded, "Well, yes, I've covered the objectives in the textbook."

Because CGI is premised on the idea of introducing addition and subtraction within
the meaningful context of a wide variety of types of story problems, CGI teachers
developed their own materials and supplemented the textbook with word problems.
During the first year, CGI teachers admitted that, although they used their textbooks,
they omitted whole pages of computation problems, and they took pages out of the
textbook and rearranged them. In addition, they also used mans word problems that
they developed on their own or from supplemental enrichment materials. In describing

how she supplemented the textbook, one teacher said she used all the kinds of the
problems that she had constructed during the summer workshop. She added:
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In fact, some of us said that we'd loved to spend more time on this and throw out the
book and just sit and talk with kids about, "How would you work this one out? How
would you work that one out?" You know, once they (the children) start catching on
to those problems, I think that's where our emphasis should be.

Going Beyond the TextbookAs teachers developed their ideas about CGI over
several years, many teachers ceased altogether to use a textbook. Fennema,
Carpenter, and Loef (in press) describe the growth and development of one such
teacher, Ms. G., over a four-year period as she learned to use children's thinking in her
mathematics teaching. During the first year, Ms. G. reported, she used the textbook to
guide her mathematics instruction explicitly. By the end of the second year, she began
to supplement the textbook and to rely more and more on her knowledge of children. By
January of the third year, Ms. G. used her textbook only as a guide; and as the year
progressed, she spent more time on story problems, and completing textbook pages
became a low priority. At the end of the third year, Ms. G. announced that she had
received permission from her principal to teach mathematics the following year without a
textbook. During the fourth year, Ms. G. reported that she "never even picks up her
textbook." Rather, she constructs her curriculum from her knowledge of the variety of
problem types and her chiidren's understanding. She has decided that the textbook is

too limiting and does not build on what children know and can do.

Over the course of the four years, the mathematics that Ms. G. taught also changed
dramatically. She increased the time she spent teaching mathematics and progressed
to including mathematics in other subjects and at other times during the day. Most
importantly, problem solving rather than drill became the focus of activity in Ms. G.'s

mathematics teaching. For example, she taught place value in relation to ongoing
problem solving. Although she consciously planned problems and activities in which
children could explore place value ideas, and she had children focus on place value
ideas where appropriate, she never taught a formal unit on place value. Rather, she
completely integrated the teaching of place value with other mathematics. At the end of
the year, she reported that she felt her children understood place value ideas better than

any group of children she had taught previously.

During the fourth year, Ms. G. also reported doing multiplication and division work
with her children. Previously, she would not have taught multiplication or division to her
first-graders because she felt these topics were much too hard. In her teaching of
multiplication and division, she described how she bought cookies for the students in her
class, and the children had to find out how many cookies were in each package. She
'lad selected the packages of cookies so that each package had a different number of
rows of cookies and different numbers in a row. She reported that she posed the

problem of "how many were in a row, how many row^, then they had to decide how
many cookies there were altogether, and then how ,ny cookies would each child get if

I were to divide them up." She stated that "it took u, the whole afternoon to do that
problem...At the end of the day, then, we did divide the cookies up to see if they were



right and to see how many were left over." This example of Ms. G.'s teaching illustrates
both her attempt to give her children mathematics problems with real-life meaning and
her recognition that her children could do many mathematics problems that she had
viewed previously as too difficult for young children.

In sum, over the four years, Ms. G. learned from listening and observing her own
students that her children have a lot of mathematical knowledge, and she learned
continuously how to use and build on that knowledge in her teaching. Ms. G. continues
to learn, as do her children.

Conclusion

In summary, the CGI approach is characterized by:

Teachers who have a knowledge base for understanding their children's
mathematical thinking.

Teachers who listen to their students' mathematical thinking and who build on the
knowledge they get by listening.

Teachers who use their knowledge of students' mathematical thinking to think
about and develop their mathematics instruction.

Teachers who place increased emphasis on mathematics problem solving and
decreased emphasis on drill and practice of routine mathematics skills.

Teachers who provide their students with opportunities to talk about how they
solve mathematics problems and to solve problems in a variety of ways.

Classrooms in which students do a lot of mathematics problem solving and
describe the processes they use to solve problems.

Classrooms in which students demonstrate increased levels of mathematics
problem-solving abilities while maintaining high levels of computational
performance.

Frequently, the message of compensatory education in mathematics has been one
of remediation and compensation for children's lack of mathematical knowledge. Our
research with CGI teachers offers a strikingly lifferent message. The message of CGI is
that when teachers begin listening to and talking with their children, they come to realize
how much more their children know than they had recognized previously. Teachers
come to understand that children have a lot of mathematical knowledge on which they

can build. When teachers know about children's mathematical knowledge and thinking,
they can use it to facilitate children's development of mathematical problem-solving
abilities. Teachers can achieve the goals of compensatory mathematics education by
focusing on and using their children's mathematical knowledge and thinking in their
classroom teaching.
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DISCUSSION: APPRECIATING CHILDREN'S MATHEMATICAL
Kisr VLEDGE AND THINKING IN ETHNICALLY, LINGUISTICALLY, AND

ECONOMICALLY DIVERSE CLASSROOMS

Judith Johnson Richards
Saundra Graham and Rosa Parks Alternative Public School

My reaction to the paper "Using Children's Mathematical Knowledge" by Penelope
Peterson, Elizabeth Fennema, and Thomas Carpenter is based on 20 years of teaching

in urban public school systems and on experience as an adjunct faculty member at

Wheelock College and as a consultant on projects developing new curricula. For the
past 17 years, I have taught in the Cambridge (Massachusetts) school system. I have

taught in the Follow Through Program and for the last eight years have been teaching at

the Saundra Graham and Rosa Parks Alternative Public School. The age-integrated

classrooms at this K-8 magnet school serve a student body that is ethnically,

linguistically, and economically diverse.

This discussion responds to each of the key elements in the Cognitively Guided
Instruction (CGI) approach described by Peterson et al., with specific attention to the role

of the teacher in an urban classroom. I appreciate the opportunity to play an active role

in the development of a new focus for preservice and inservice math education, in the

empowerment of teachers in the design and implementation of curriculum, and in
fostering an awareness of children's mathematical knowledge and thinking.

The CGI approach is one model for bringing current research in muthamatics
education into daily classroom practice. This approach is based on the following three

principles:

Teachers must have expansive views of children's mathematical knowledge and
thinking.

The mathematics curriculum must focus on problem solving.

Teachers must encourage and recognize multiple strategies and solutions for
problem solving.

I would suggest that this foundation is complete only when a fourth cornerstone is in

placc:

The mathematics curriculum must be relevant to the events, daily lives, and rich
cultural traditions of all our children.
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Children's Mathematical Knowledge

The need for teachers to have an expansive view of children's mathematical
knowledge and thinking is the basic premise underlying the construction of the new
National Council of Teachers of Mathematics (NCTM) Standards. In fact, the first four
standards are Mathematics as Problem Solving, Mathematics as Communication,
Mathematical Reasoning, and Mathematical Connections. I believe that these standards
are directly embodied in the.three key principles of CGI and in the fourth cornerstone
suggested above.

Teachers Need an Expansive View of Both Mathematics and Children's
Mathematical Knowledge

Peterson, Fennema, and Carpenter begin their paper by acknowledging the skills
and understanding that all children bring to a school setting, and note that this is not a
widely held view among educatorsparticularly in schools with large populations of poor
children. All too frequently, inner-city school math programs consist of rote-learning drill
and practice (low-order skills) and either "neglect or de-emphasize the teaching of higher
order skills" (Levine, Levine, & Eubanks, 1985).

School-aged children are certainly not empty vessels. As the authors of "Using
Children's Mathematical Knowledge" stress, a large amount of recent research and
classroom practices address the acceptance of the mathematical knowledge children
bring to school. Resnick (1987) has studied the differences between children's out-of-
school problem solving and their in-school thinking, and suggests that formal
mathematics may in fact discourage students from bringing knowledge and intuition to
school tasks by stressing memorization and written computation. Children can, and do,

demonstrate problem-solving abilities and mathematical thinking independently of their
mastery of school-based algorithms and number facts. Robert Moses' Algebra Project
(Silva & Moses, 1990) with urban middle school students and Maggie Lampert's work
with multiplication are examples of post-primary implementation of this practice of
bringing children's mathematical thinking to bear in classroom mathematics.

In addition to the appreciation of children's mathematical understandir j stressed by
Peterson et al., teachers need a broader conception of the field of mathematics. My
experience as an instructor in the teacher training program at Wheelock College leads
me to believe that teachers must themselves have enhanced knowledge of a broad
range of mathematical subject matter, including "the nature and discourse of
mathemaths, and the role of mathematics in culture and society" (Ball, 1989). They
must have experience with a wide range of developmentally appropriate materials and
must themselves experience problem solving as learners.

During the first session of my course, Teaching Mathematics to Young Children, I
ask students to start a "working definitions" journal entry called "What is Math?" Over
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95% of the students restrict their definition of mathematics to computation and numbers.
This is in contrast to the NCTM Standards' decreased attention to early use of symbolic
numbers and isolated computation.

We must help teachers in the United States develop a wider view of mathematics.
Children throughout many other English-speaking countries call the subject "maths." I
believe that this distinction is significant in the curriculum as well. In my view, some of
the most innovative and progressive math educational curricula in the past two decades
have come out of England (the Nuffield Series of the 1970s) and, more recently,
Australia (Mathematics Curriculum Teaching Project). The need tu bring an
understanding of the broad field of mathematics and of children's thinking to teacher

training is critical.

The National Science Foundation-supported project Cognitively Guided Instruction
appears to embody this position. The teachers who took the CGI workshops seem
empowered by the experience. Theiritestimonies are evidence of enormous growth.
The teachers speak of textbooks as resources, but they have realized their own potential
to make changes in the order of presentation. Textbooks necessarily have one page
before another, a structure that dictates linear teaming. Children actually learn naturally
in a more geometric fashion, which can be supported only if instructional materials are

sequel iced flexibly.

How Do We Know What Children Are Thinking?

Children's mathematizing (Freudenthal, 1973) is often hidden and lost forever when
they get the wrong answer for the "right reason" (sense making). For example, Xiamara,
a sixth-grader, encountered the following problem on a test:

Three walls of your room are covered with wallpaper. The fourth wall is 17' by 7'.
Wallpaper is $2.99 a square foot. How much will it cost to finish the wallpapering
job?

She initially came up with the "correct" answer ($355.81), but she found herself in a
quandary. She believed that her calculations were correct but also believed that no one
could spend that much money wallpapering a room. She doubted her own mathematical
competence; and since multiplication with decimals was fairly new to her, she reasoned
that she must have placed the decimal point incorrectly. She moved the decimal point
one place to the left, rounded her answer to two decimal places, and arrived at the

answer $35.58. In a subsequent conversation with her teacher, she was fortunate to

have the opportunity to explain how she arrived at her answer. She came away from the
conversation with a renewed sense of her own arithmetic skills, but also with a
discouraging belief that school word problems do not have to be sensible, just

arithmetically correct.
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Xiamara's story also reminds us of the need to find ways to assess children's
mathematical knowledge and thinking. Answers on test papers and textbook
assignments do not bring us an understanding of children's thinking. The CGI approach,
Robert Moses' Algebra Project (Silva & Moses, 1990), and the works of Magdalene
Lampert (Lampert, 1990), Leah Richards (L. Richards, 1990), and Constance Karla
(Kamil, 1985) all suggest that teachers should offer and orchestrate lively classroom
discourse. By observing and recording classroom discussions, teachers may assess
children's problem-solving abilities. Peterson, Fennema, and Carpenter suggest that this

practice allows teachers to continuously make curriculum changes during instruction.
The teacher may also have an active role in the discourse.

Accepting the existence of children's mathematical knowledge and thinking brings
the issue of teachers' expectations to the table. There is tremendous evidence to
suggest that teachers' expectations drive the course of classroom curriculum and that
teachers' attitudes influence student achievement. These effects are particularly evident
when children are labeled "disadvantaged." The research of Jere Brophy, as cited by

Eva Chun in 1988, describes this "down teaching" in detail. If teachers are to provide

opportunities for excellence for all students, their expectations must be positive and

equitable.

A Focus on Problem Solving In a Meaningful Curriculum

A focus on problem solving in the CGI classrooms allows children to be individually
challenged and to use higher-level thinking skills and multiple strategies and learning
styles. The problems presented are not simply a vehicle for children to practice the

algorithms. I was pleased to see classroom descriptions that included the introduction of
a small number of problems each day. The research literature suggests that this

practice is atypina I in the United States, yet is the norm in Japanese classrooms.

The approach used by the CGI teacher described in the paper incorporates two
innovative instructional techniques. In the first, the teacher writes a story that uses
classroom children's names and that reflects his or her perception of the students' math
skills. The second technique involves having children share their strategies for solving

equations in a group discussion.

I applaud the first of these techniques as a vast improvement over using traditional
textbook word problems and a key-word approach. I would also propose extending this

approach to give children an opportunity to author their own stories that describe
problems for which arithmetic may be of service. This process also allows for story
sharing and peer reactions (Kliman & Richards, 1990). The third-graders in our
classroom took the California Achievement Test (CAT) after using this writing/response
process for four months. Our children, without any textbook experiences with school-

based word problems, did as well as the children in two control classrooms on the
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problem-solving subtest. Although the sample was too small for quantitative analysis, it
might be noted that one difference did occur. All of our students, who speak English as
a second language, scored in the "mastery range," while students with similar profiles
(including an identical twin) in the control classrooms did not demonstrate mastery in this
subtest on the CAT.

The authors' use of children's literature is an exciting idea that is equally successful
with older children. Marlene Kliman and Glenn Kliman (1990) describe a wide range of
mathematical activities and modeling through the use of Jonathan Swift's Gulliver's
Travels. Children in our classroom spent a day trying to estimate Gulliver's actual
height, armed only with Swift's description of a Lilliputian's size as being equal to the
length of Gulliver's six-inch hand. Our children measured all their classmates' hand
lengths and heights. They averaged these ratios to predict Gulliver's heighta mere
five feet tall. They noted that this "made sense," since they had visited the Salem Witch
House and knew that people were of shorter stature in the 17th and 18th centuries.

I would further encourage teachers to ''package" arithmetic situations in the cuitural
folktales of the children in their classrooms. This practice has allowed children of color
to assume leadership roles in diverse (in terms of ethnicity, arithmetic skill, language,

family economics, and gender) groups in our classroom. Over a third of the children at
the Graham and Parks School are Haitian-American. Traditional Haitian folktales are an
integral part of all areas of our classroom curricula. For example, I took a well-known
problem concerning the sequence of fillings and pourings with a 3-liter and a 7-liter
container to achieve exactly 5 liters, and "repackaged" it in the Haitian story of "Tayzen":

Do you remember the story of Teyzen? Well, one day Asefi and her brother Dyesel
were going to the spring to get water. Their mother gave them each a calabash.
Asefi's calabash held 7 liters when it was full. Dyesel's calabash held 3 liters when it
was full. Their mother told them to bring home exactly 5 liters. Tell about the fillings
and pourings that the timoun [children] must do in order to brif;:i home 5 liters.

If teachers demonstrate respect for children's knowledge and mak9 room for it in
their classrooms, they have an opportunity to develop a far richer curriculum. "To
become meaningful, a curriculum has to be enacted by pupils as well as teachers, all of
whom have their private lives outside school. . . . A curriculum, as soon as it becomes
more than intentions, is embodied in the communicative life of an institution, the talk and

gestures by which pupils and teachers exchange meanings even when they quarrel or
cannot agree. In this sense, curriculum is a form of communication" (Barnes, 1976).
Teachers from Eurocnntric cultures must maintain high regard for, and an understanding
of, other cultural traditions and styles. The misunderstanding of behavioral style can
make it difficult to "establish rapport and to communicate" (Hilliard, 1989).
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Multiple Solutions and Strategies

When problem solving is presented in meaningful contexts, all children are
encouraged to bring their own learning styles to the process. Patricia Davidson's work
from a neuropsychology perspective suggests that people learn math in one of two
distinct styles (related to the functions of the brain's left and right hemispheres). She
notes, for example, that style I learners (left cortical hemisphere preference) master
formulas and have good recall of number facts (e.g., 6+8=14), while style II learners
have stronger spatial and estimation skills. They usually know the "doubles" facts and
might add 6+8 by thinking that 6+6=12 and since 8 is 2 more than 6,2 is added on to
make 14. What is particularly interesting about this research in light of Peterson,
Fennema, and Carpenter's work with CGI is that some of the CGI teachers reacted to
children that Davidson might call style ll learners by remarking that their thinking was
"sophisticated" or "abstract." Research indicates that teachers are more apt to be
analytical (style I) in their own teaching and learning styles (Dunn & Dunn, 1988).

If these same teach,Js were to accept only single-answer, single-strategy problem-
solving methods, they would lock out a large number of children from opportunities for
excellence in mathematics. Peterson, Fennema, and Carpenter also describe a teacher
with a limited view of children's knowledge. Mrs. W.'s resistance to Adam's mental
computation strategy and insistence on a meaningless recipe is, unfortunately, typical of
many teachers. In Young Children Reinvent Arithmetic, Constance Kamii details many
classroom scenes where children like Adam are encouraged to share multiple strategies
for mental arithmetic. Whereas children group numbers in many ways, the practice of
adding first the tens and then the ones makes absolute sense. The recording is quite
simple; the partial sums are listed and then combined:

35

±35
60

1.12
70

During my own childhood, I was taught that the one (and only) way to compute
mentally was to imagine a "chalkboard in my mind" and then to "see" the numbers and
"carry" as I would with paper and pencil. Unfortunately, the numbers always
disappeared before I could finish the .alculation. I was convinced that I was not "good at
math" and did not reach for advanced work in the field. It was not until much later that I

learned Adam's strategy (to add larger units first). This offered me a renewed sense of
confidence in my own abilities in mathematics.

While I applaud the new empowerment of teachers in the design of meaningful
curricula, I am well aware of the position of power that teachers have always held in the
classroom and the need to give status to all children's knowledge and thinking. When
teachers and children have different "ways of doing math" (strategies), the teacher's
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approach is usually regarded as "right" or given greater status. Typically, if children do
not understand a teacher's explanation, the teacher raises her or his volume and
delivers the information in exactly the same way. The teacher's style becomes the
normative reference, and many students who are sent to remedial classrooms may
simply be "learning different."

In CGIclassrooms, children are encouraged to share their strategies for solving
equations. This is reminiscent of Constance Kamii's studies in Alabama classrooms and
Dr. Kiyonobu ltakura's Hypothesis Experiment Instruction (HE1) method, a system
developed in Japan for the construction of knowledge through discussion and
demonstration. I have adapted the HE1 method for use in my own classroom (J. Richards,
1990). While I applaud the approach for acknowledging and giving status to diverse
strategies, I am concerned about the number of children who actually share their
strategies in a large group setting. Teachers must be mindful to bring less-frequent
speakers into the discourse.

Conclusion

We have a reform document in mathematics that is unparalleled in other areas of the
curriculum. The NCTM Standards offer a new opportunity to bring about real change.

The question then becomes: 'Where do we start?" If we were able to start (on a
national scale) with the teachers of young children, we would still lose almost a
generation of children and young adults. It wo '1seem, therefore, that the universities
and teachers' colleges need to embrace these cnanges early in the 1990s if we are to
affect the greatest number of classrooms during the next decade. In addition, I would
love to see the CGI approaches described in "Using Children's Mathematical
Knowledge" become a genuine and integrai part of the math classrooms of all children.
The framework provided by Chapter 1, Follow Through, and other federal target projects
might be a good conduit for beginning this transformation. As individual states review

their teacher certification standards, the state boards of education might insist that the
key elements of CGI be infused into teacher training for future teachers in undergraduate
and graduate programs and for current practitioners in inservice programs. Through
CGI, Peterson, Fermenta, and Carpenter offer the scaffolding for teachers and cnildren
to develop a new curriculum.
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